Paper Reference(s) 66666/01 Edexcel GCE

Core Mathematics C4

Advanced

Tuesday 16 June 2015 – Afternoon

Time: 1 hour 30 minutes

<u>Materials required for examination</u> Mathematical Formulae (Pink) Items included with question papers Nil

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation or symbolic differentiation/integration, or have retrievable mathematical formulae stored in them.

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper.

Answer ALL the questions.

You must write your answer for each question in the space following the question. When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided. Full marks may be obtained for answers to ALL questions. The marks for the parts of questions are shown in round brackets, e.g. (2). There are 8 questions in this question paper. The total mark for this paper is 75. There are 28 pages in this question paper. Any blank pages are indicated.

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled. You must show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit. 1. (*a*) Find the binomial expansion of

$$(4+5x)^{\frac{1}{2}}, |x| < \frac{4}{5},$$

in ascending powers of x, up to and including the term in x^2 . Give each coefficient in its simplest form.

(5)

(b) Find the exact value of $(4+5x)^{\frac{1}{2}}$ when $x = \frac{1}{10}$.

Give your answer in the form $k \sqrt{2}$, where k is a constant to be determined.

(1)

(c) Substitute $x = \frac{1}{10}$ into your binomial expansion from part (a) and hence find an approximate value for $\sqrt{2}$.

Give your answer in the form $\frac{p}{q}$, where p and q are integers. (2)

2. The curve *C* has equation

$$x^2 - 3xy - 4y^2 + 64 = 0.$$

(a) Find $\frac{dy}{dx}$ in terms of x and y.

(5)

(b) Find the coordinates of the points on C where $\frac{dy}{dx} = 0$.

(Solutions based entirely on graphical or numerical methods are not acceptable.)

(6)

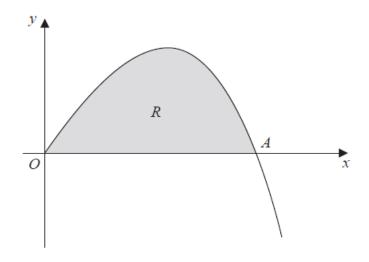


Figure 1

Figure 1 shows a sketch of part of the curve with equation $y = 4x - xe^{\frac{1}{2}x}$, $x \ge 0$.

The curve meets the *x*-axis at the origin *O* and cuts the *x*-axis at the point *A*.

(a) Find, in terms of ln 2, the x coordinate of the point A.

(b) Find
$$\int x e^{\frac{1}{2}x} dx$$
. (3)

The finite region *R*, shown shaded in Figure 1, is bounded by the *x*-axis and the curve with equation $y = 4x - xe^{\frac{1}{2}x}$, $x \ge 0$.

(c) Find, by integration, the exact value for the area of *R*. Give your answer in terms of ln 2.

(3)

(2)

4. With respect to a fixed origin O, the lines l_1 and l_2 are given by the equations

$$l_1: \mathbf{r} = \begin{pmatrix} 5\\-3\\p \end{pmatrix} + \lambda \begin{pmatrix} 0\\1\\-3 \end{pmatrix}, \quad l_2: \mathbf{r} = \begin{pmatrix} 8\\5\\-2 \end{pmatrix} + \mu \begin{pmatrix} 3\\4\\-5 \end{pmatrix},$$

where λ and μ are scalar parameters and p is a constant.

The lines l_1 and l_2 intersect at the point A.

- (a) Find the coordinates of A.
- (b) Find the value of the constant p.

(3)

(2)

(c) Find the acute angle between l_1 and l_2 , giving your answer in degrees to 2 decimal places. (3)

The point *B* lies on l_2 where $\mu = 1$.

- (d) Find the shortest distance from the point B to the line l₁, giving your answer to 3 significant figures.(3)
- 5. A curve *C* has parametric equations

$$x = 4t + 3$$
, $y = 4t + 8 + \frac{5}{2t}$, $t \neq 0$.

- (a) Find the value of $\frac{dy}{dx}$ at the point on C where t = 2, giving your answer as a fraction in its simplest form.
- (b) Show that the cartesian equation of the curve C can be written in the form

$$y = \frac{x^2 + ax + b}{x - 3}, \qquad x \neq 3,$$

where *a* and *b* are integers to be determined.

(3)

(3)

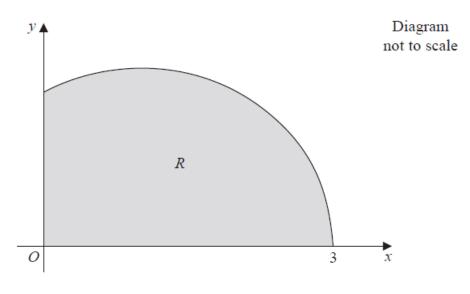


Figure 2 shows a sketch of the curve with equation $y = \sqrt{(3-x)(x+1)}$, $0 \le x \le 3$.

The finite region R, shown shaded in Figure 2, is bounded by the curve, the x-axis, and the y-axis.

(*a*) Use the substitution $x = 1 + 2 \sin \theta$ to show that

$$\int_{0}^{3} \sqrt{(3-x)(x+1)} \, dx = k \int_{-\frac{\pi}{6}}^{\frac{\pi}{2}} \cos^{2} \theta \, d\theta,$$

where *k* is a constant to be determined.

(b) Hence find, by integration, the exact area of R.

(3)

(5)

7. (a) Express $\frac{2}{P(P-2)}$ in partial fractions.

A team of biologists is studying a population of a particular species of animal.

The population is modelled by the differential equation

$$\frac{\mathrm{d}P}{\mathrm{d}t} = \frac{1}{2}P(P-2)\cos 2t, \quad t \ge 0,$$

where P is the population in thousands, and t is the time measured in years since the start of the study.

Given that P = 3 when t = 0,

(b) solve this differential equation to show that

$$=\frac{6}{3-e^{\frac{1}{2}\sin 2t}}$$
(7)

(c) find the time taken for the population to reach 4000 for the first time. Give your answer in years to 3 significant figures.

Р

(3)

(3)

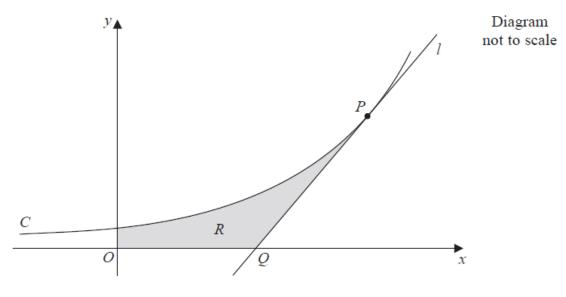


Figure 3 shows a sketch of part of the curve C with equation $y = 3^{x}$.

The point *P* lies on *C* and has coordinates (2, 9).

The line *l* is a tangent to *C* at *P*. The line *l* cuts the *x*-axis at the point *Q*.

(a) Find the exact value of the x coordinate of Q.

The finite region R, shown shaded in Figure 3, is bounded by the curve C, the x-axis, the y-axis and the line l. This region R is rotated through 360° about the x-axis.

(b) Use integration to find the exact value of the volume of the solid generated.

Give your answer in the form $\frac{p}{q}$, where p and q are exact constants.

[You may assume the formula
$$V = \frac{1}{3}\pi r^2 h$$
 for the volume of a cone.]

(6)

TOTAL FOR PAPER: 75 MARKS

END

(4)

June 2015 6666/01 Core Mathematics 4 Mark Scheme

Question Number		Scheme	Marks
1. (a)	(4 + 5	$x)^{\frac{1}{2}} = \underline{(4)^{\frac{1}{2}}} \left(1 + \frac{5x}{4}\right)^{\frac{1}{2}} = \underline{2} \left(1 + \frac{5x}{4}\right)^{\frac{1}{2}} \qquad \qquad \underline{(4)^{\frac{1}{2}} \text{ or } \underline{2}}$	<u>B1</u>
	= {2}	$\left[1 + \left(\frac{1}{2}\right)(kx) + \frac{(\frac{1}{2})(-\frac{1}{2})}{2!}(kx)^2 + \dots\right]$ see notes	M1 A1ft
	= {2}	$\left[1 + \left(\frac{1}{2}\right)\left(\frac{5x}{4}\right) + \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}\left(\frac{5x}{4}\right)^2 + \dots\right]$	
	$= 2 \begin{bmatrix} 1 \end{bmatrix}$	$1 + \frac{5}{8}x - \frac{25}{128}x^2 + \dots$ See notes below!	
	= 2 +	$\frac{5}{4}x; -\frac{25}{64}x^2 + \dots$ isw	A1; A1
(b)	$\begin{cases} x = \frac{1}{2} \end{cases}$	$\frac{1}{10} \Rightarrow (4+5(0.1))^{\frac{1}{2}} = \sqrt{4.5} = \sqrt{\frac{9}{2}} = \frac{3}{\frac{\sqrt{2}}{\sqrt{2}}} = \frac{3}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}}$	[5]
		$=\frac{3}{2}\sqrt{2} \qquad \qquad \frac{3}{2}\sqrt{2} \text{ or } k = \frac{3}{2} \text{ or } 1.5 \text{ o.e.}$	B1
			[1]
(c)	$\frac{3}{2}\sqrt{2}$	or $1.5\sqrt{2}$ or $\frac{3}{\sqrt{2}} = 2 + \frac{5}{4} \left(\frac{1}{10}\right) - \frac{25}{64} \left(\frac{1}{10}\right)^2 + \dots = 2.121\dots$ See notes	M1
	So, $\frac{3}{2}$	$\sqrt{2} = \frac{543}{256}$ or $\frac{3}{\sqrt{2}} = \frac{543}{256}$	
	yields,	$\sqrt{2} = \frac{181}{128}$ or $\sqrt{2} = \frac{256}{181}$ $\frac{181}{128}$ or $\frac{362}{256}$ or $\frac{543}{384}$ or $\frac{256}{181}$ etc.	
			[2] 8
		Question 1 Notes	
1. (a)	B1	$(4)^{\frac{1}{2}}$ or $\underline{2}$ outside brackets or $\underline{2}$ as candidate's constant term in their binomial expansion	1.
	M1	Expands $(+kx)^{\frac{1}{2}}$ to give any 2 terms out of 3 terms simplified or un-simplified,	
		Eg: $1 + \left(\frac{1}{2}\right)(kx)$ or $\left(\frac{1}{2}\right)(kx) + \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}(kx)^2$ or $1 + \dots + \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}(kx)^2$	
	 	where k is a numerical value and where $k \neq 1$.	
	A1	A correct simplified or un-simplified $1 + \left(\frac{1}{2}\right)(kx) + \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}(kx)^2$ expansion with consis	stent (kx).
	Note	(<i>kx</i>), $k \neq 1$, must be consistent (on the RHS, not necessarily on the LHS) in a candidate	's expansion.

1. (a) ctd.	Note	Award B1M1A0 for $2\left[1+\left(\frac{1}{2}\right)(5x)+\frac{(\frac{1}{2})(-\frac{1}{2})}{2!}\left(\frac{5x}{4}\right)^2+\right]$ because (kx) is not consistent.			
	Note	Incorrect bracketing: $2\left[1+\left(\frac{1}{2}\right)\left(\frac{5x}{4}\right)+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}\left(\frac{5x^2}{4}\right)+\dots\right]$ is B1M1A0 unless recovered.			
	A1	$2 + \frac{5}{4}x$ (simplified fractions) or allow $2 + 1.25x$ or $2 + 1\frac{1}{4}x$			
	A1	Accept only $-\frac{25}{64}x^2$ or $-0.390625x^2$			
	SC	f a candidate <i>would otherwise score</i> 2 nd A0, 3 rd A0 then allow Special Case 2nd A1 for either			
		SC: $2\left[1+\frac{5}{8}x;\right]$ or SC: $2\left[1+\frac{25}{128}x^2+\right]$ or SC: $\lambda\left[1+\frac{5}{8}x-\frac{25}{128}x^2+\right]$			
		or SC: $\left[\lambda + \frac{5\lambda}{8}x - \frac{25\lambda}{128}x^2 +\right]$ (where λ can be 1 or omitted), where each term in the [] is a simplified fraction or a decimal,			
		OR SC: for $2 + \frac{10}{8}x - \frac{50}{128}x^2 + \dots$ (i.e. for not simplifying their correct coefficients.)			
	Note	Candidates who write $2\left[1 + \left(\frac{1}{2}\right)\left(-\frac{5x}{4}\right) + \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}\left(-\frac{5x}{4}\right)^2 + \dots\right]$, where $k = -\frac{5}{4}$ and not $\frac{5}{4}$			
		and achieve $2 - \frac{5}{4}x - \frac{25}{64}x^2 +$ will get B1M1A1A0A1			
	Note	Ignore extra terms beyond the term in x^2 .			
	Note	You can ignore subsequent working following a correct answer. $\frac{2}{3}$			
(b)	B1	$\frac{3}{2}\sqrt{2}$ or $1.5\sqrt{2}$ or $k = \frac{3}{2}$ or 1.5 o.e. (Ignore how $k = \frac{3}{2}$ is found.)			
(c)	M1	Substitutes $x = \frac{1}{10}$ or 0.1 into their binomial expansion found in part (a) which must contain both			
		an x term and an x^2 term (or even an x^3 term) and equates this to either $\frac{3}{\sqrt{2}}$ or their $k\sqrt{2}$ from (b),			
		where k is a numerical value.			
	Note	M1 can be implied by $\frac{3}{2}\sqrt{2}$ or $1.5\sqrt{2}$ or $\frac{3}{\sqrt{2}}$ = awrt 2.121			
	Note	M1 <i>can be implied</i> by $\frac{1}{k} \left(\text{their } \frac{543}{256} \right)$, with their <i>k</i> found in part (b).			
	Note	M1 <i>cannot be implied</i> by (k) (their $\frac{543}{256}$), with their k found in part (b).			
	A1	$\frac{181}{128}$ or any equivalent fraction, eg: $\frac{362}{256}$ or $\frac{543}{384}$. Also allow $\frac{256}{181}$ or any equivalent fraction.			
	Note	Also allow A1 for $p = 181$, $q = 128$ or $p = 181\lambda$, $q = 128\lambda$			
		or $p = 256, q = 181$ or $p = 256\lambda, q = 181\lambda$, where $\lambda \in \mathbb{Z}^+$			
	Note Note Note	You can recover work for part (c) in part (b). You cannot recover part (b) work in part (c). Candidates are allowed to restart and gain all 2 marks in part (c) from an incorrect part (b). Award M1 A1 for the correct answer from no working.			
L	11010	Twate first for the context answer from no working.			

1. (a)	Altern	Alternative methods for part (a)			
	Altern	ative method 1: Candidates can apply an alternative form of the binomial expansion.			
	$\left\{ \left(4+5x\right)^{\frac{1}{2}} \right\} = \left(4\right)^{\frac{1}{2}} + \left(\frac{1}{2}\right)\left(4\right)^{-\frac{1}{2}}\left(5x\right) + \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}\left(4\right)^{-\frac{3}{2}}\left(5x\right)^{2}$				
	B1 $(4)^{\frac{1}{2}}$ or 2				
	M1 A1	Any two of three (un-simplified) terms correct. All three (un-simplified) terms correct.			
	A1	$2 + \frac{5}{4}x$ (simplified fractions) or allow $2 + 1.25x$ or $2 + 1\frac{1}{4}x$			
	A1	Accept only $-\frac{25}{64}x^2$ or $-0.390625x^2$			
	Note	The terms in C need to be evaluated.			
		So ${}^{\frac{1}{2}}C_0(4)^{\frac{1}{2}} + {}^{\frac{1}{2}}C_1(4)^{-\frac{1}{2}}(5x); + {}^{\frac{1}{2}}C_2(4)^{-\frac{3}{2}}(5x)^2$ without further working is B0M0A0.			
	Altern	ative Method 2: Maclaurin Expansion $f(x) = (4 + 5x)^{\frac{1}{2}}$			
	f"(x)=	$= -\frac{25}{4}(4+5x)^{-\frac{3}{2}}$ Correct f''(x)	B1		
		$=\frac{1}{2}(4+5x)^{-\frac{1}{2}}(5)$ $\frac{\pm a(4+5x)^{-\frac{1}{2}}; \ a\neq\pm 1}{1-\frac{1}{2}}$			
	f'(x) =	$= \frac{1}{2}(4+5x)^{-2}(5)$ $\frac{1}{2}(4+5x)^{-\frac{1}{2}}(5)$	A1 oe		
	$\left\{ \therefore f(0) = 2 , f'(0) = \frac{5}{4} \text{ and } f''(0) = -\frac{25}{32} \right\}$				
	So, $f(x) = 2 + \frac{5}{4}x; -\frac{25}{64}x^2 +$ A1; A1				

Question Number	Scheme	Marks
2.	$x^2 - 3xy - 4y^2 + 64 = 0$	
(a)	$\left\{ \underbrace{\underbrace{dy}}_{dx} \times \right\} \underline{2x} - \left(\underbrace{3y + 3x \frac{dy}{dx}}_{dx} \right) \underbrace{-8y \frac{dy}{dx}}_{dx} = \underline{0}$	M1 <u>A1</u> <u>M1</u>
	$2x - 3y + (-3x - 8y)\frac{dy}{dx} = 0$	dM1
	$\frac{dy}{dx} = \frac{2x - 3y}{3x + 8y} \text{ or } \frac{3y - 2x}{-3x - 8y}$ o.e.	A1 cso
(b)	$\left\{\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \Rightarrow\right\} 2x - 3y = 0$	[5] M1
	$y = \frac{2}{3}x \qquad \qquad x = \frac{3}{2}y$	A1ft
	$x^{2} - 3x\left(\frac{2}{3}x\right) - 4\left(\frac{2}{3}x\right)^{2} + 64 = 0 \qquad \qquad \left(\frac{3}{2}y\right)^{2} - 3\left(\frac{3}{2}y\right)y - 4y^{2} + 64 = 0$	dM1
	$x^{2} - 2x^{2} - \frac{16}{9}x^{2} + 64 = 0 \implies -\frac{25}{9}x^{2} + 64 = 0 \qquad \frac{9}{4}y^{2} - \frac{9}{2}y^{2} - 4y^{2} + 64 = 0 \implies -\frac{25}{4}y^{2} + 64 = 0$	
	$\left\{ \Rightarrow x^2 = \frac{576}{25} \Rightarrow \right\} x = \frac{24}{5} \text{ or } -\frac{24}{5} \qquad \left\{ \Rightarrow y^2 = \frac{256}{25} \Rightarrow \right\} y = \frac{16}{5} \text{ or } -\frac{16}{5}$	A1 cso
	When $x = \pm \frac{24}{5}$, $y = \frac{2}{3} \left(\frac{24}{5} \right)$ and $-\frac{2}{3} \left(\frac{24}{5} \right)$ When $y = \pm \frac{16}{5}$, $x = \frac{3}{2} \left(\frac{16}{5} \right)$ and $-\frac{3}{2} \left(\frac{16}{5} \right)$	
	$\left(\frac{24}{5},\frac{16}{5}\right)$ and $\left(-\frac{24}{5},-\frac{16}{5}\right)$ or $x=\frac{24}{5}, y=\frac{16}{5}$ and $x=-\frac{24}{5}, y=-\frac{16}{5}$	ddM1
	(55) (55) 555 (cso	A1 [6] 11
	Alternative method for part (a)	
(a)	$\left\{\frac{\cancel{dx}}{\cancel{dy}} \asymp\right\} \underbrace{2x\frac{dx}{dy}}_{} - \left(\underbrace{3y\frac{dx}{dy} + 3x}_{}\right) \underbrace{-8y}_{} = \underbrace{0}$	M1 <u>A1</u> <u>M1</u>
	$(2x-3y)\frac{\mathrm{d}x}{\mathrm{d}y} - 3x - 8y = 0$	dM1
	$\frac{dy}{dx} = \frac{2x - 3y}{3x + 8y} \text{ or } \frac{3y - 2x}{-3x - 8y}$ o.e.	A1 cso
	Question 2 Notes	[5]
2. (a) General	Note Writing down $\frac{dy}{dx} = \frac{2x - 3y}{3x + 8y}$ or $\frac{3y - 2x}{-3x - 8y}$ from no working is full marks	
	Note Writing down $\frac{dy}{dx} = \frac{2x - 3y}{-3x - 8y}$ or $\frac{3y - 2x}{3x + 8y}$ from no working is M1A0B1M1A0	
	Note Few candidates will write $2x dx - 3y dx - 3x dy - 8y dy = 0$ leading to $\frac{dy}{dx} = \frac{2x - 3y}{3x + 8y}$, o.e.	
	This should get full marks.	

2. (a)	M1	Differentiates implicitly to include either $\pm 3x \frac{dy}{dx}$ or $-4y^2 \rightarrow \pm ky \frac{dy}{dx}$. (Ignore $\left(\frac{dy}{dx} = \right)$).				
	A1	Both $x^2 \to \underline{2x}$ and $\dots -4y^2 + 64 = 0 \to -8y\frac{dy}{dx} = 0$				
	Note	If an extra term appears then award A0.				
	M1	$-3xy \rightarrow -3x\frac{dy}{dx} - 3y$ or $-3x\frac{dy}{dx} + 3y$ or $3x\frac{dy}{dx} - 3y$ or $3x\frac{dy}{dx} + 3y$				
	Note	$2x - 3y - 3x\frac{dy}{dx} - 8y\frac{dy}{dx} \rightarrow 2x - 3y = 3x\frac{dy}{dx} + 8y\frac{dy}{dx}$				
		will get 1^{st} A1 (implied) as the "=0" can be implied by the rearrangement of their equation.				
	dM1	dependent on the FIRST method mark being awarded.				
		An attempt to factorise out all the terms in $\frac{dy}{dx}$ as long as there are <i>at least two terms</i> in $\frac{dy}{dx}$.				
		i.e. $\dots + (-3x - 8y)\frac{dy}{dx} = \dots$ or $\dots = (3x + 8y)\frac{dy}{dx}$. (Allow combining in 1 variable).				
	A1	$\frac{2x-3y}{3x+8y}$ or $\frac{3y-2x}{-3x-8y}$ or equivalent.				
	Note Note	cso If the candidate's solution is not completely correct, then do not give this mark. You cannot recover work for part (a) in part (b).				
2. (b)	M1	Sets their numerator of their $\frac{dy}{dx}$ equal to zero (or the denominator of their $\frac{dx}{dy}$ equal to zero) o.e.				
	Note	1 st M1 can also be gained by setting $\frac{dy}{dx}$ equal to zero in their " $2x - 3y - 3x\frac{dy}{dx} - 8y\frac{dy}{dx} = 0$ "				
	Note Note	their numerator involves one variable only then only the 1 st M1 mark is possible in part (b). Their numerator is a constant then no marks are available in part (b)				
	Note	If their numerator is in the form $\pm ax^2 \pm by = 0$ or $\pm ax \pm by^2 = 0$ then the first 3 marks are				
		possible in part (b).				
	Note	$\frac{dy}{dx} = \frac{2x - 3y}{3x + 8y} = 0$ is not sufficient for M1.				
	A1ft	Either				
		• Sets $2x - 3y$ to zero and obtains either $y = \frac{2}{3}x$ or $x = \frac{3}{2}y$				
		• the follow through result of making either y or x the subject from setting their numerator of their $\frac{dy}{dx}$ equal to zero				
	dM1	dependent on the first method mark being awarded.				
		Substitutes <i>either</i> their $y = \frac{2}{3}x$ or their $x = \frac{3}{2}y$ into the original equation to give an equation in one variable only.				
	A1	Obtains either $x = \frac{24}{5}$ or $-\frac{24}{5}$ or $y = \frac{16}{5}$ or $-\frac{16}{5}$, (or equivalent) by correct solution only.				
	 	i.e. You can allow for example $x = \frac{48}{10}$ or 4.8, etc.				
	Note	$x = \sqrt{\frac{576}{25}}$ (not simplified) or $y = \sqrt{\frac{256}{25}}$ (not simplified) is not sufficient for A1.				

2. (b)	ddM1	dependent on both previous method marks being awarded in this part.			
ctd		<u>Method 1</u> Either:			
		• substitutes their x into their $y = \frac{2}{3}x$ or substitutes their y into their $x = \frac{3}{2}y$, or			
		• substitutes <i>the other of</i> their $y = \frac{2}{3}x$ or their $x = \frac{3}{2}y$ into the original equation,			
		and achieves either:			
		• exactly two sets of two coordinates or			
		• exactly two distinct values for x and exactly two distinct values for y.			
		Method 2 Either:			
		• substitutes their first x-value, x_1 into $x^2 - 3xy - 4y^2 + 64 = 0$ to obtain one y-value, y_1 and			
		substitutes their second x-value, x_2 into $x^2 - 3xy - 4y^2 + 64 = 0$ to obtain 1 y-value y_2 or			
		substitutes their second y-value, y_2 into $x^2 - 3xy - 4y^2 + 64 = 0$ to obtain one x-value x_2 .			
	Note	Three or more sets of coordinates given (without identification of two sets of coordinates) is ddM0.			
	A1	oth $\left(\frac{24}{5}, \frac{16}{5}\right)$ and $\left(-\frac{24}{5}, -\frac{16}{5}\right)$, only by cso. Note that decimal equivalents are fine.			
	Note	Also allow $x = \frac{24}{5}$, $y = \frac{16}{5}$ and $x = -\frac{24}{5}$, $y = -\frac{16}{5}$ all seen in their working to part (b).			
	Note	Allow $x = \pm \frac{24}{5}$, $y = \pm \frac{16}{5}$ for 3 rd A1.			
	Note	$x = \pm \frac{24}{5}, y = \pm \frac{16}{5}$ followed by eg. $\left(\frac{16}{5}, \frac{24}{5}\right)$ and $\left(-\frac{16}{5}, -\frac{24}{5}\right)$			
	Note	(eg. coordinates stated the wrong way round) is 3 rd A0. It is possible for a candidate who does not achieve full marks in part (a), (but has a correct numerator			
		for $\frac{dy}{dx}$) to gain all 6 marks in part (b).			
	Note	Decimal equivalents to fractions are fine in part (b). i.e. $(4.8, 3.2)$ and $(-4.8, -3.2)$.			
	Note	$\left(\frac{24}{5},\frac{16}{5}\right)$ and $\left(-\frac{24}{5},-\frac{16}{5}\right)$ from no working is M0A0M0A0M0A0.			
	Note	Candidates could potentially lose the final 2 marks for setting both their numerator and denominator			
	Note	to zero. No credit in this part can be gained by only setting the denominator to zero.			

Question Number		Scheme	Marks
3.	y = 4x	$-xe^{\frac{1}{2}x}, x \ge 0$	
(a)	$\begin{cases} y=0 \\ \vdots \\ \end{cases}$	$\Rightarrow 4x - xe^{\frac{1}{2}x} = 0 \Rightarrow x(4 - e^{\frac{1}{2}x}) = 0 \Rightarrow \bigg\}$	
	e	$\frac{1}{2^x} = 4 \implies x_A = 4 \ln 2$ Attempts to solve $e^{\frac{1}{2^x}} = 4$ giving $x = \dots$ in terms of $\pm \lambda \ln \mu$ where $\mu > 0$	M1
		$4\ln 2 \operatorname{cao} (\operatorname{Ignore} x = 0)$	A1 [2]
(b)	$\int \int re^{\frac{1}{2}x}$	$dx = 2x e^{\frac{1}{2}x} - \int 2e^{\frac{1}{2}x} \{dx\} \qquad \qquad$	M1
		$2xe^{\frac{1}{2}x} - \int 2e^{\frac{1}{2}x} \{dx\}, \text{ with or without } dx$	A1 (M1 on ePEN)
		$= 2xe^{\frac{1}{2}x} - 4e^{\frac{1}{2}x} \{+c\} \qquad 2xe^{\frac{1}{2}x} - 4e^{\frac{1}{2}x} \text{ o.e. with or without } +c$	A1 [3]
(c)	$\left\{\int 4x\mathrm{d}x\mathrm{d}x\right\}$	$x = 2x^2$ $4x \rightarrow 2x^2 \text{ or } \frac{4x^2}{2} \text{ o.e.}$	B1
	$\left\{\int_{0}^{4\ln 2} (4\pi) dx\right\}$	$4x - xe^{\frac{1}{2}x})dx \bigg\} = \left[2x^2 - \left(2xe^{\frac{1}{2}x} - 4e^{\frac{1}{2}x}\right)\right]_0^{4\ln 2 \text{ or ln 16 or their limits}}$	
	$=\left(2(41)\right)$	$(\ln 2)^{2} - 2(4\ln 2)e^{\frac{1}{2}(4\ln 2)} + 4e^{\frac{1}{2}(4\ln 2)} - \left(2(0)^{2} - 2(0)e^{\frac{1}{2}(0)} + 4e^{\frac{1}{2}(0)}\right)$ See notes	M1
	$=(32(\ln$	$(n 2)^2 - 32(\ln 2) + 16) - (4)$	
	= 32(ln	$2)^{2} - 32(\ln 2) + 12$ $32(\ln 2)^{2} - 32(\ln 2) + 12$, see notes	A1 [3]
		Orreghter 2 Nature	8
3. (a)	M1	Question 3 NotesAttempts to solve $e^{\frac{1}{2}x} = 4$ giving $x =$ in terms of $\pm \lambda \ln \mu$ where $\mu > 0$	
	A1	$4\ln 2$ cao stated in part (a) only (Ignore $x = 0$)	
(b)	NOT E	Part (b) appears as M1M1A1 on ePEN, but is now marked as M1A1A1.	
	M1	Integration by parts is applied in the form $\alpha x e^{\frac{1}{2}x} - \beta \int e^{\frac{1}{2}x} \{ dx \}$, where $\alpha > 0, \beta > 0$.	
		(must be in this form) with or without dx	
	A1	$2xe^{\frac{1}{2}x} - \int 2e^{\frac{1}{2}x} \{dx\}$ or equivalent, with or without dx. Can be un-simplified.	
	A1	$2xe^{\frac{1}{2}x} - 4e^{\frac{1}{2}x}$ or equivalent with or without + c. Can be un-simplified.	
	Note	You can also allow $2e^{\frac{1}{2}x}(x-2)$ or $e^{\frac{1}{2}x}(2x-4)$ for the final A1.	
	isw	You can ignore subsequent working following on from a correct solution.	
	SC	<u>SPECIAL CASE</u> : A candidate who uses $u = x$, $\frac{dv}{dx} = e^{\frac{1}{2}x}$, writes down the correct "b	y parts"
		formula, but makes only one error when applying it can be awarded Special Case M1. (Applying their v counts for one consistent error.)	

3. (c)	B1	$4x \rightarrow 2x^2 \text{ or } \frac{4x^2}{2} \text{ oe}$		
	M1	Complete method of applying limits of their x_A and 0 to all terms of an expression of the form		
		$\pm Ax^2 \pm Bxe^{\frac{1}{2}x} \pm Ce^{\frac{1}{2}x}$ (where $A \neq 0, B \neq 0$ and $C \neq 0$) and subtracting the correct way round.		
	NT 4			
	Note	Evidence of a proper consideration of the limit of 0 is needed for M1. So subtracting 0 is M0.		
	Note	ln16 or 2ln4 or equivalent is fine as an upper limit.		
	A1	A correct three term exact quadratic expression in $\ln 2$.		
		For example allow for A1		
		• $32(\ln 2)^2 - 32(\ln 2) + 12$		
		• $8(2\ln 2)^2 - 8(4\ln 2) + 12$		
		• $2(4\ln 2)^2 - 32(\ln 2) + 12$		
		• $2(4\ln 2)^2 - 2(4\ln 2)e^{\frac{1}{2}(4\ln 2)} + 12$		
	Note	Note that the constant term of 12 needs to be combined from $4e^{\frac{1}{2}(4\ln 2)} - 4e^{\frac{1}{2}(0)}$ o.e.		
	Note	Also allow $32 \ln 2(\ln 2 - 1) + 12$ or $32 \ln 2 \left(\ln 2 - 1 + \frac{12}{32 \ln 2} \right)$ for A1.		
	Note	Do not apply "ignore subsequent working" for incorrect simplification.		
		Eg: $32(\ln 2)^2 - 32(\ln 2) + 12 \rightarrow 64(\ln 2) - 32(\ln 2) + 12$ or $32(\ln 4) - 32(\ln 2) + 12$		
	Note	Bracketing error: $32 \ln 2^2 - 32(\ln 2) + 12$, unless recovered is final A0.		
	Note	Notation: Allow $32(\ln^2 2) - 32(\ln 2) + 12$ for the final A1.		
	Note	5.19378 without seeing $32(\ln 2)^2 - 32(\ln 2) + 12$ is A0.		
	Note	5.19378 following from a correct $2x^2 - \left(2xe^{\frac{1}{2}x} - 4e^{\frac{1}{2}x}\right)$ is M1A0.		
	Note	5.19378 from no working is M0A0.		

Question Number	Scheme	Marks
4.	$l_1: \mathbf{r} = \begin{pmatrix} 5 \\ -3 \\ p \end{pmatrix} + \lambda \begin{pmatrix} 0 \\ 1 \\ -3 \end{pmatrix}, l_2: \mathbf{r} = \begin{pmatrix} 8 \\ 5 \\ -2 \end{pmatrix} + \mu \begin{pmatrix} 3 \\ 4 \\ -5 \end{pmatrix}.$ Let θ = acute angle between l_1 and l_2 . Note: You can mark parts (a) and (b) together.	
(a)	$\{l_1 = l_2 \Rightarrow \mathbf{i}:\} \ 5 = 8 + 3\mu \Rightarrow \mu = -1$ Finds μ and substitutes their μ into l_2	M1
	So, $\left\{\overrightarrow{OA}\right\} = \begin{pmatrix} 8\\5\\-2 \end{pmatrix} - 1 \begin{pmatrix} 3\\4\\-5 \end{pmatrix} = \begin{pmatrix} 5\\1\\3 \end{pmatrix}$ $5\mathbf{i} + \mathbf{j} + 3\mathbf{k} \text{ or } \begin{pmatrix} 5\\1\\3 \end{pmatrix} \text{ or } (5, 1, 3)$	
(b)	$\{\mathbf{j}: -3 + \lambda = 5 + 4\mu \implies \} -3 + \lambda = 5 + 4(-1) \implies \lambda = 4$ Equates \mathbf{j} components, substitutes their μ and solves to give $\lambda =$	[2] M1
	k : $p - 3\lambda = -2 - 5\mu \Rightarrow$ $p - 3(4) = -2 - 5(-1) \Rightarrow \underline{p = 15}$ Equates k components, substitutes their λ and their μ and solves to give $p =$ or equates k components to give their " $p - 2\lambda$ the k value of λ found in part (a)"	M1
	or $\mathbf{k}: p - 3\lambda = 3 \Rightarrow$ $p - 3(4) = 3 \Rightarrow \underline{p = 15}$ their " $p - 3\lambda$ = the \mathbf{k} value of A found in part (a)", substitutes their λ and solves to give $p =$ p = 15	A1
(c)	$\mathbf{d}_{1} = \begin{pmatrix} 0 \\ 1 \\ -3 \end{pmatrix}, \mathbf{d}_{2} = \begin{pmatrix} 3 \\ 4 \\ -5 \end{pmatrix} \implies \begin{pmatrix} 0 \\ 1 \\ -3 \end{pmatrix} \bullet \begin{pmatrix} 3 \\ 4 \\ -5 \end{pmatrix}$ Realisation that the dot product is required between $\pm A\mathbf{d}_{1}$ and $\pm B\mathbf{d}_{2}$.	[3] M1
	$\cos \theta = \pm K \left(\frac{0(3) + (1)(4) + (-3)(-5)}{\sqrt{(0)^2 + (1)^2 + (-3)^2} \cdot \sqrt{(3)^2 + (4)^2 + (-5)^2}} \right) $ An attempt to apply the dot product formula between $\pm A\mathbf{d}_1$ and $\pm B\mathbf{d}_2$.	dM1 (A1 on ePEN)
	$\cos \theta = \frac{19}{\sqrt{10}.\sqrt{50}} \Rightarrow \theta = 31.8203116 = 31.82 \ (2 \text{ dp}) \qquad \text{anything that rounds to } 31.82$	A1
(d)	$\overrightarrow{OB} = \begin{pmatrix} 11\\9\\-7 \end{pmatrix}; \overrightarrow{AB} = \begin{pmatrix} 11\\9\\-7 \end{pmatrix} - \begin{pmatrix} 5\\1\\3 \end{pmatrix} = \begin{pmatrix} 6\\8\\-10 \end{pmatrix} \text{ or } \overrightarrow{AB} = 2 \begin{pmatrix} 3\\4\\-5 \end{pmatrix} = \begin{pmatrix} 6\\8\\-10 \end{pmatrix} \text{ See notes}$ $ \overrightarrow{AB} = \sqrt{6^2 + 8^2 + (-10)^2} \left\{ = 10\sqrt{2} \right\}$	[3] M1
	$\frac{d}{10\sqrt{2}} = \sin\theta$ Writes down a correct trigonometric equation involving the shortest distance, d. Eg: $\frac{d}{\text{their } AB} = \sin\theta$, oe.	dM1
	$\left\{ d = 10\sqrt{2}\sin 31.82 \Rightarrow \right\} d = 7.456540753 = 7.46 (3sf)$ anything that rounds to 7.46	A1
		[3] 11

4. (b)	Alternative method for part (b)			
		E	liminates λ to write down an	
	$\begin{cases} 3 \times \mathbf{j}: -9 + 3\lambda = 15 + 12\mu \\ \mathbf{k}: p - 3\lambda = -2 + 5\mu \end{cases} p - 9 = 13 + 7\mu$		equation in p and μ	M1
		Substitu	tes their μ and solves to give	
	$p-9=13+7(-1) \implies \underline{p=15}$		$p = \dots$	M1
			<i>p</i> = 15	A1
4. (d)	<u>Alternative Methods for part (d)</u> Let X be the foot of the perpendicular from B onto l_1			
	$\mathbf{d}_{1} = \begin{pmatrix} 0\\1\\-3 \end{pmatrix}, \overrightarrow{OX} = \begin{pmatrix} 5\\-3\\15 \end{pmatrix} + \lambda \begin{pmatrix} 0\\1\\-3 \end{pmatrix} = \begin{pmatrix} 5\\-3+\lambda\\15-3\lambda \end{pmatrix}$			
	$\overrightarrow{BX} = \begin{pmatrix} 5 \\ -3+\lambda \\ 15-3\lambda \end{pmatrix} - \begin{pmatrix} 11 \\ 9 \\ -7 \end{pmatrix} = \begin{pmatrix} -6 \\ -12+\lambda \\ 22-3\lambda \end{pmatrix}$			
	Method 1		(A 11 · · · · · · · ·	
	$\begin{pmatrix} -6 \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix}$		(Allow a sign slip in	
	$\overline{BX} \bullet \mathbf{d}_1 = 0 \implies \begin{pmatrix} -6 \\ -12 + \lambda \\ 22 - 3\lambda \end{pmatrix} \bullet \begin{pmatrix} 0 \\ 1 \\ -3 \end{pmatrix} = -12 + \lambda - 6$	$66 + 9\lambda = 0$	$ copying \mathbf{d}_1) $	
	$\left[\begin{array}{c} 22-3\lambda \end{array}\right] \left[\begin{array}{c} -3 \end{array}\right]$			
	39		solves the resulting equation to find	M1
	leading to $10\lambda - 78 = 0 \implies \lambda = \frac{39}{5}$		a value for λ .	
	$\overline{BX} = \begin{pmatrix} -6 \\ -12 + \frac{39}{5} \\ 22 - 3\left(\frac{39}{5}\right) \end{pmatrix} = \begin{pmatrix} -6 \\ -\frac{21}{5} \\ -\frac{7}{5} \end{pmatrix}$		Substitutes their value of λ into their \overline{BX} . Note: This mark is dependent upon the previous M1 mark .	dM1
	$d = BX = \sqrt{\left(-6\right)^2 + \left(-\frac{21}{5}\right)^2 + \left(-\frac{7}{5}\right)^2} = 7.456540753.$		awrt 7.46	A1
	Method 2			
	Let $\beta = \left \overrightarrow{BX} \right ^2 = 36 + 144 - 24\lambda + \lambda^2 + 484 - 132\lambda + 9$	λ^2 F	Finds $\beta = \left \overrightarrow{BX} \right ^2$ in terms of λ ,	
	$= 10\lambda^2 - 156\lambda + 664$		finds $\frac{d\beta}{d\lambda}$ and sets this result	M1
	So $\frac{\mathrm{d}\beta}{\mathrm{d}\lambda} = 20\lambda - 156 = 0 \implies \lambda = \frac{39}{5}$	e	$d\lambda$ qual to 0 and finds a value for λ .	
	$\left \overline{BX} \right ^2 = 10 \left(\frac{39}{5} \right)^2 - 156 \left(\frac{39}{5} \right) + 664 = \frac{278}{5}$ Substitutes their value of λ into their $\left \overline{BX} \right ^2$. Note: This mark is dependent upon the previous M1 mark .			dM1
	$d = BX = \sqrt{\frac{278}{5}} = 7.456540753$		awrt 7.46	A1

		Question 4 Notes			
4. (a)	M1	Finds μ and substitutes their μ into l_2			
		(5)			
	A1	Point of intersection of $5\mathbf{i} + \mathbf{j} + 3\mathbf{k}$. Allow $\begin{pmatrix} 5\\1\\3 \end{pmatrix}$ or (5,	1, 3).		
	Note	You cannot recover the answer for part (a) in part (c) or	part (d).		
(b)	M1	Equates j components, substitutes their μ and solves to give $\lambda =$			
	M1	Equates k components, substitutes their λ and their μ	and solves to give $p = \dots$		
		or equates k components to give their " $p - 3\lambda$ = the k value of A" found in part (b).			
	A1	<i>p</i> = 15			
(c)	NOTE	Part (c) appears as M1A1A1 on ePEN, but now is ma	rked as M1M1A1.		
	M1	Realisation that the dot product is required between $\pm A$	\mathbf{d}_1 and $\pm B\mathbf{d}_2$.		
	Note	Allow one slip in candidates copying down their direction	on vectors, \mathbf{d}_1 and \mathbf{d}_2 .		
	dM1	dependent on the FIRST method mark being awarde	d.		
		An attempt to apply the dot product formula between $\pm A$			
	A1	anything that rounds to 31.82. This can also be achieved	1 by 180 – 148.1796 = awrt 31.	.82	
	Note	$\theta = 0.5553^{\circ}$ is A0.			
			76		
	Note	M1A1 for $\cos \theta = \left(\frac{0 - 16 - 60}{\sqrt{(0)^2 + (4)^2 + (-12)^2}} \sqrt{(-3)^2 + (-4)^2}\right)$	$\frac{1}{100} = \frac{-70}{100}$		
			$(4)^2 + (5)^2 / \sqrt{160.}\sqrt{50}$		
		ive Method: Vector Cross Product	a vactor areas product mothed		
		ply this scheme if it is clear that a candidate is applying $\begin{pmatrix} & & \\ & & \end{pmatrix}$		1.	
		$ = \left(\begin{array}{c} 0\\1\\-3 \end{array} \right) \times \left(\begin{array}{c} 3\\4\\-5 \end{array} \right) = \left\{ \left \begin{array}{c} \mathbf{i} \mathbf{j} \mathbf{k}\\0 1 -3\\3 4 -5 \end{array} \right = \left. 7\mathbf{i} - 9\mathbf{j} - 3\mathbf{k} \right\} $	Realisation that the vector		
	$\mathbf{d}_1 \times \mathbf{d}_2 =$	$= \begin{vmatrix} 1 \\ \times \end{vmatrix} 4 = \left\{ \begin{vmatrix} 0 \\ 1 \\ -3 \end{vmatrix} = 7\mathbf{i} - 9\mathbf{j} - 3\mathbf{k} \right\}$	cross product is required between $\pm A\mathbf{d}_1$ and $\pm B\mathbf{d}_2$.	<u>M1</u>	
		$\begin{pmatrix} -3 \end{pmatrix} \begin{pmatrix} -5 \end{pmatrix} \qquad 3 4 -5 \end{pmatrix}$	between $\pm A\mathbf{d}_1$ and $\pm B\mathbf{d}_2$.		
		$\sqrt{(7)^2 + (-0)^2 + (2)^2}$		JN / 1	
		$\sin \theta = \frac{\sqrt{(7)^2 + (-9)^2 + (3)^2}}{\sqrt{(0)^2 + (1)^2 + (-3)^2} \cdot \sqrt{(3)^2 + (4)^2 + (-5)^2}}$	An attempt to apply the vector cross product formula	dM1 (A1 on	
			vector cross product formula	ePEN)	
	$\sin \theta =$	$\sqrt{139} \rightarrow \theta = 31,8203116 = 31,82(2 dp)$	anything that rounds to 31.82	A1	
	$\sin \theta =$	$\frac{\sqrt{139}}{\sqrt{10}.\sqrt{50}} \Rightarrow \theta = 31.8203116 = 31.82 \ (2 \text{ dp})$	anything that founds to 51.62	ЛІ	
(d)		ull method for finding <i>B</i> and for finding the magnitude of	\overrightarrow{AB} or the magnitude of \overrightarrow{BA} .		
	$\frac{dM1}{dM1}$ $\frac{dependent on the first method mark being awarded.}{Writes down correct trigonometric equation involving the shortest distance, d.}{Eg: \frac{d}{\text{their } AB} = \sin\theta or \frac{d}{\text{their } AB} = \cos(90 - \theta), o.e., where "their AB" is a value.$				
		nd θ = "their θ " or stated as θ			
	A1 anything that rounds to 7.46				

Question Number	Scheme	Marks
5.	Note: You can mark parts (a) and (b) together.	
(a)	$x = 4t + 3, y = 4t + 8 + \frac{5}{2t}$	
	$\frac{dx}{dt} = 4$, $\frac{dy}{dt} = 4 - \frac{5}{2}t^{-2}$ Both $\frac{dx}{dt} = 4$ or $\frac{dt}{dx} = \frac{1}{4}$ and $\frac{dy}{dt} = 4 - \frac{5}{2}t^{-2}$	B1
	So, $\frac{dy}{dx} = \frac{4 - \frac{5}{2}t^{-2}}{4} \left\{ = 1 - \frac{5}{8}t^{-2} = 1 - \frac{5}{8t^2} \right\}$ Candidate's $\frac{dy}{dt}$ divided by a candidate's $\frac{dx}{dt}$	M1 o.e.
	{When $t = 2$, } $\frac{dy}{dx} = \frac{27}{32}$ or 0.84375 cao	A1
		[3]
	Way 2: Cartesian Method	
	$\frac{dy}{dx} = 1 - \frac{10}{(x-3)^2}$, simplified or un-simplified.	B1
	$\frac{dy}{dx} = \pm \lambda \pm \frac{\mu}{(x-3)^2}, \lambda \neq 0, \mu \neq 0$	M1
	{When $t = 2, x = 11$ } $\frac{dy}{dx} = \frac{27}{32}$ $\frac{27}{32}$ or 0.84375 cao	A1
		[3]
	Way 3: Cartesian Method	
	$\frac{dy}{dx} = \frac{(2x+2)(x-3) - (x^2 + 2x - 5)}{(x-3)^2}$ Correct expression for $\frac{dy}{dx}$, simplified or un-simplified.	B1
	$\left\{ = \frac{x^2 - 6x - 1}{(x - 3)^2} \right\} \qquad \qquad \frac{dy}{dx} = \frac{f'(x)(x - 3) - 1f(x)}{(x - 3)^2},$	M1
	where $f(x) = \text{their } "x^2 + ax + b", g(x) = x - 3$	
	{When $t = 2, x = 11$ } $\frac{dy}{dx} = \frac{27}{32}$ $\frac{27}{32}$ or 0.84375 cao	A1
		[3]
(b)	$\left\{ t = \frac{x-3}{4} \Rightarrow \right\} \ y = 4\left(\frac{x-3}{4}\right) + 8 + \frac{5}{2\left(\frac{x-3}{4}\right)}$ Eliminates <i>t</i> to achieve an equation in only <i>x</i> and <i>y</i>	M1
	$y = x - 3 + 8 + \frac{10}{x - 3}$	
	$y = \frac{(x-3)(x-3) + 8(x-3) + 10}{x-3} or y(x-3) = (x-3)(x-3) + 8(x-3) + 10$ See notes	dM1
	or $y = \frac{(x+5)(x-3)+10}{x-3}$ or $y = \frac{(x+5)(x-3)}{x-3} + \frac{10}{x-3}$	uwn
	$r^2 + 2r = 5$ Correct algebra leading to	
	$\Rightarrow y = \frac{x^2 + 2x - 5}{x - 3}, \ \{a = 2 \text{ and } b = -5\} \qquad y = \frac{x^2 + 2x - 5}{x - 3} \text{ or } a = 2 \text{ and } b = -5$	A1 cso
		[3] 6

Question Number	Scheme	Marks
5. (b)	Alternative Method 1 of Equating Coefficients	
	$y = \frac{x^2 + ax + b}{x - 3} \implies y(x - 3) = x^2 + ax + b$	
	$y(x-3) = (4t+3)^2 + 2(4t+3) - 5 = 16t^2 + 32t + 10$	
	$x^{2} + ax + b = (4t + 3)^{2} + a(4t + 3) + b$	
	$(4t+3)^{2} + a(4t+3) + b = 16t^{2} + 32t + 10$ Correct method of obtaining an equation in only t, a and b	M1
	t: $24+4a=32 \Rightarrow a=2$ finds both $a=$ and $b=$	dM1
	constant: $9 + 3a + b = 10 \implies b = -5$ $a = 2 \text{ and } b = -5$	A1
		[3]
5. (b)	Alternative Method 2 of Equating Coefficients	
	$\left\{t = \frac{x-3}{4} \Rightarrow\right\} y = 4\left(\frac{x-3}{4}\right) + 8 + \frac{5}{2\left(\frac{x-3}{4}\right)}$ Eliminates <i>t</i> to achieve an equation in only <i>x</i> and <i>y</i>	M1
	$y = x - 3 + 8 + \frac{10}{x - 3} \Rightarrow y = x + 5 + \frac{10}{(x - 3)}$	
	$\underline{y(x-3)} = (x+5)(x-3) + 10 \implies x^2 + ax + b = \underline{(x+5)(x-3) + 10}$	dM1
	$y^2 + 2y = 5$ Correct algebra leading to	
	$\Rightarrow y = \frac{x^2 + 2x - 5}{x - 3} \qquad \text{or equating coefficients to} \\ \text{give } a = 2 \text{ and } b = -5 \qquad y = \frac{x^2 + 2x - 5}{x - 3} \text{ or } a = 2 \text{ and } b = -5$	A1 cso
		[3]

	Question 5 Notes		
5. (a)	B1	$\frac{dx}{dt} = 4$ and $\frac{dy}{dt} = 4 - \frac{5}{2}t^{-2}$ or $\frac{dy}{dt} = \frac{8t^2 - 5}{2t^2}$ or $\frac{dy}{dt} = 4 - 5(2t)^{-2}(2)$, etc.	
	Note	$\frac{dy}{dt}$ can be simplified or un-simplified.	
	Note	You can imply the B1 mark by later working.	
	M1	Candidate's $\frac{dy}{dt}$ divided by a candidate's $\frac{dx}{dt}$ or $\frac{dy}{dt}$ multiplied by a candidate's $\frac{dt}{dx}$	
	Note	M1 can be also be obtained by substituting $t = 2$ into both their $\frac{dy}{dt}$ and their $\frac{dx}{dt}$ and then	
		dividing their values the correct way round.	
	A1	$\frac{27}{32}$ or 0.84375 cao	
(b)	<u>M1</u>	Eliminates <i>t</i> to achieve an equation in only <i>x</i> and <i>y</i> .	
	dM1	dependent on the first method mark being awarded.	
		Either: (ignoring sign slips or constant slips, noting that k can be 1)	
		• Combining all three parts of their $x-3 + \overline{8} + \left(\frac{10}{x-3}\right)$ to form a single fraction with a	
		common denominator of $\pm k(x-3)$. Accept three separate fractions with the same denominator.	
		• Combining both parts of their $\underline{x+5} + (\underline{10})$, (where $\underline{x+5}$ is their $4(\underline{x-3}) + 8$),	
		to form a single fraction with a common denominator of $\pm k(x-3)$. Accept two separate fractions with the same denominator.	
		• Multiplies both sides of their $y = \underline{x-3} + \overline{8} + \left(\frac{10}{x-3}\right)$ or their $y = \underline{x+5} + \left(\frac{10}{x-3}\right)$ by	
		$\pm k(x-3)$. Note that all terms in their equation must be multiplied by $\pm k(x-3)$.	
	Note	Condone "invisible" brackets for dM1.	
	A1	Correct algebra with no incorrect working leading to $y = \frac{x^2 + 2x - 5}{x - 3}$ or $a = 2$ and $b = -5$	
	Note	Some examples for the award of dM1 in (b):	
	dM0 for $y = x - 3 + 8 + \frac{10}{x - 3} \rightarrow y = \frac{(x - 3)(x - 3) + 8 + 10}{x - 3}$. Should be + 8(x - 3) +		
		dM0 for $y = x - 3 + \frac{10}{x - 3} \rightarrow y = \frac{(x - 3)(x - 3) + 10}{x - 3}$. The "8" part has been omitted.	
		dM0 for $y = x + 5 + \frac{10}{x - 3} \rightarrow y = \frac{x(x - 3) + 5 + 10}{x - 3}$. Should be + 5(x - 3) +	
		dM0 for $y = x + 5 + \frac{10}{x - 3} \rightarrow y(x - 3) = x(x - 3) + 5(x - 3) + 10(x - 3)$. Should be just 10.	
	Note	$y = x + 5 + \frac{10}{x - 3} \rightarrow y = \frac{x^2 + 2x - 5}{x - 3}$ with no intermediate working is dM1A1.	

Question Number	Scheme	Marks
6. (a)	$A = \int_0^3 \sqrt{(3-x)(x+1)} \mathrm{d}x \ , \ x = 1 + 2\sin\theta$	
	$\frac{\mathrm{d}x}{\mathrm{d}\theta} = 2\cos\theta \qquad \qquad \frac{\mathrm{d}x}{\mathrm{d}\theta} = 2\cos\theta \text{ or } 2\cos\theta \text{ used correctly}$	B1
	in their working. Can be implied. $\left\{ \int \sqrt{(3-x)(x+1)} dx \text{ or } \int \sqrt{(3+2x-x^2)} dx \right\}$	
	$= \int \sqrt{(3 - (1 + 2\sin\theta))((1 + 2\sin\theta) + 1)} 2\cos\theta \{d\theta\}$ Substitutes for both x and dx, where $dx \neq \lambda d\theta$. Ignore $d\theta$	M1
	$= \int \sqrt{(2 - 2\sin\theta)(2 + 2\sin\theta)} 2\cos\theta \{d\theta\}$	
	$= \int \sqrt{\left(4 - 4\sin^2\theta\right)} 2\cos\theta \left\{d\theta\right\}$	
	$= \int \sqrt{\left(4 - 4(1 - \cos^2 \theta)\right)} 2\cos \theta \left\{ d\theta \right\} \text{ or } \int \sqrt{4\cos^2 \theta} 2\cos \theta \left\{ d\theta \right\} $ Applies $\cos^2 \theta = 1 - \sin^2 \theta$ see notes	M1
	$= 4 \int \cos^2 \theta d\theta, \ \{k = 4\}$ $4 \int \cos^2 \theta d\theta \text{ or } \int 4 \cos^2 \theta d\theta$ Note: $d\theta$ is required here.	A1
	$0 = 1 + 2\sin\theta$ or $-1 = 2\sin\theta$ or $\sin\theta = -\frac{1}{2} \Rightarrow \theta = -\frac{\pi}{6}$	
	and $3 = 1 + 2\sin\theta$ or $2 = 2\sin\theta$ or $\sin\theta = 1 \Rightarrow \frac{\theta}{2} = \frac{\pi}{2}$ See notes	B1
	$\int \left\{ h \int \cos^2 \theta \left(d \theta \right) \right\} = \left\{ h \right\} \int \left(1 + \cos 2\theta \right) \left\{ d \theta \right\} $ Applies $\cos 2\theta = 2\cos^2 \theta - 1$	[5]
(b)	$\left\{ \left\{ k \right\} \right\} = \left\{ k \right\} \int \left(\frac{1}{2} \right) \left\{ u \theta \right\} $ to their integral	M1
	$= \{k\} \left(\frac{1}{2}\theta + \frac{1}{4}\sin 2\theta\right)$ Integrates to give $\pm \alpha\theta \pm \beta\sin 2\theta$, $\alpha \neq 0$, $\beta \neq 0$ or $k(\pm \alpha\theta \pm \beta\sin 2\theta)$	M1 (A1 on ePEN)
	$\left\{ \operatorname{So} 4 \int_{-\frac{\pi}{6}}^{\frac{\pi}{2}} \cos^2 \theta d\theta = \left[2\theta + \sin 2\theta \right]_{-\frac{\pi}{6}}^{\frac{\pi}{2}} \right\}$	
	$= \left(2\left(\frac{\pi}{2}\right) + \sin\left(\frac{2\pi}{2}\right)\right) - \left(2\left(-\frac{\pi}{6}\right) + \sin\left(-\frac{2\pi}{6}\right)\right)$	
	$\left\{ = \left(\pi\right) - \left(-\frac{\pi}{3} - \frac{\sqrt{3}}{2}\right) \right\} = \frac{4\pi}{3} + \frac{\sqrt{3}}{2} \qquad \qquad$	A1 cao cso
	$\frac{1}{6} \left(8\pi + 3\sqrt{3} \right)$	
		[3] 8

		Question 6 Notes
6. (a)	B1	$\frac{dx}{d\theta} = 2\cos\theta$. Also allow $dx = 2\cos\theta d\theta$. This mark can be implied by later working.
	Note	You can give B1 for $2\cos\theta$ used correctly in their working.
	M1	Substitutes $x = 1 + 2\sin\theta$ and their $dx \left(\text{from their rearranged} \frac{dx}{d\theta} \right)$ into $\sqrt{(3-x)(x+1)} dx$.
	Note Note	Condone bracketing errors here. $dx \neq \lambda d\theta$. For example $dx \neq d\theta$.
	Note	Condone substituting $dx = \cos\theta$ for the 1 st M1 after a correct $\frac{dx}{d\theta} = 2\cos\theta$ or $dx = 2\cos\theta d\theta$
	M1	Applies either • $1 - \sin^2 \theta = \cos^2 \theta$ • $\lambda - \lambda \sin^2 \theta$ or $\lambda (1 - \sin^2 \theta) = \lambda \cos^2 \theta$ • $4 - 4\sin^2 \theta = 4 + 2\cos 2\theta - 2 = 2 + 2\cos 2\theta = 4\cos^2 \theta$
		• 4-4 sin $\theta = 4+2\cos 2\theta - 2 = 2+2\cos 2\theta = 4\cos \theta$ to their expression where λ is a numerical value.
	A1	Correctly proves that $\int \sqrt{(3-x)(x+1)} dx$ is equal to $4 \int \cos^2 \theta d\theta$ or $\int 4\cos^2 \theta d\theta$
	Note Note Note	All three previous marks must have been awarded before A1 can be awarded. Their final answer must include $d\theta$. You can ignore limits for the final A1 mark.
	B1	Evidence of a correct equation in $\sin \theta$ or $\sin^{-1} \theta$ for both <i>x</i> -values leading to both θ values. Eg:
		• $0 = 1 + 2\sin\theta$ or $-1 = 2\sin\theta$ or $\sin\theta = -\frac{1}{2}$ which then leads to $\theta = -\frac{\pi}{6}$, and
		• $3 = 1 + 2\sin\theta$ or $2 = 2\sin\theta$ or $\sin\theta = 1$ which then leads to $\theta = \frac{\pi}{2}$
	Note	Allow B1 for $x = 1 + 2\sin\left(-\frac{\pi}{6}\right) = 0$ and $x = 1 + 2\sin\left(\frac{\pi}{2}\right) = 3$
	Note	Allow B1 for $\sin \theta = \left(\frac{x-1}{2}\right)$ or $\theta = \sin^{-1}\left(\frac{x-1}{2}\right)$ followed by $x = 0, \ \theta = -\frac{\pi}{6}; \ x = 3, \ \theta = \frac{\pi}{2}$
(b)	NOTE	Part (b) appears as M1A1A1 on ePEN, but is now marked as M1M1A1.
	M1	Writes down a correct equation involving $\cos 2\theta$ and $\cos^2 \theta$ $1 + \cos 2\theta$ (1 + $\cos 2\theta$)
		Eg: $\cos 2\theta = 2\cos^2 \theta - 1$ or $\cos^2 \theta = \frac{1 + \cos 2\theta}{2}$ or $\lambda \cos^2 \theta = \lambda \left(\frac{1 + \cos 2\theta}{2}\right)$
	M1	and <i>applies</i> it to their integral. Note: Allow M1 for a correctly stated formula (via an incorrect rearrangement) being applied to their integral. Integrates to give an expression of the form $\pm \alpha \theta \pm \beta \sin 2\theta$ or $k(\pm \alpha \theta \pm \beta \sin 2\theta)$, $\alpha \neq 0$, $\beta \neq 0$
	A 1	(can be simplified or un-simplified). A <i>correct solution in part (b)</i> leading to a "two term" exact answer.
	A1	Eg: $\frac{4\pi}{3} + \frac{\sqrt{3}}{3}$ or $\frac{8\pi}{3} + \frac{\sqrt{3}}{3}$ or $\frac{1}{3}(8\pi + 3\sqrt{3})$
	Note Note	5.054815 from no working is M0M0A0. Candidates can work in terms of k (note that k is not given in (a)) for the M1M1 marks in part (b).
	Note	If they incorrectly obtain $4 \int_{-\frac{\pi}{6}}^{\frac{\pi}{2}} \cos^2 \theta d\theta$ in part (a) (or guess $k = 4$) then the final A1 is available
		for a correct solution in part (b) only.

Question Number	Scheme	Marks
7. (a)	$\frac{2}{P(P-2)} = \frac{A}{P} + \frac{B}{(P-2)}$	
	$2 \equiv A(P-2) + BP$ Can be implied.	M1
	A = -1, B = 1 Either one.	A1
	giving $\frac{1}{(P-2)} - \frac{1}{P}$ See notes. cao, aef	A1
(b)	$\frac{\mathrm{d}P}{\mathrm{d}t} = \frac{1}{2}P(P-2)\cos 2t$	[3]
	$\int \frac{2}{P(P-2)} dP = \int \cos 2t dt \qquad \text{can be implied by later working}$	B1 oe
	$\pm \lambda \ln(P-2) \pm \mu \ln P,$ $\lambda \neq 0, \mu \neq 0$	M1
	$\ln(P-2) - \ln P = \frac{1}{2}\sin 2t \ (+c)$ $\ln(P-2) - \ln P = \frac{1}{2}\sin 2t$	A1
	$\{t = 0, P = 3 \Rightarrow\} \ln 1 - \ln 3 = 0 + c \{\Rightarrow c = -\ln 3 \text{ or } \ln(\frac{1}{3})\}$ See notes	M1
	$\ln (P-2) - \ln P = \frac{1}{2} \sin 2t - \ln 3$	
	$\ln\left(\frac{3(P-2)}{P}\right) = \frac{1}{2}\sin 2t$	
	Starting from an equation of the form $ \frac{3(P-2)}{P} = e^{\frac{1}{2}\sin 2t} $ $ \frac{3(P-2)}{P} = e^{\frac{1}{2}\sin 2t} $ $ \lambda, \mu, \beta, K, \delta \neq 0, \text{ applies a fully correct method to eliminate their logarithms.} $ Must have a constant of integration that need	M1
	Must have a constant of integration that need not be evaluated (see note)	
	$3(P-2) = Pe^{\frac{1}{2}\sin 2t} \Rightarrow 3P - 6 = Pe^{\frac{1}{2}\sin 2t}$ Gives $3P - Pe^{\frac{1}{2}\sin 2t} = 6 \Rightarrow P(3 - e^{\frac{1}{2}\sin 2t}) = 6$ $Must have a constant of integration that need not be evaluated (see note)$	dM1
	$P = \frac{6}{(3 - e^{\frac{1}{2}\sin 2t})} *$ that need not be evaluated (see note) Correct proof.	A1 * cso
(c)	{population = $4000 \Rightarrow$ } $P = 4$ States $P = 4$ or applies $P = 4$	[7] M1
	Obtains $+ \lambda \sin 2t = \ln k$ or $+ \lambda \sin t - \ln k$	
	$\left \frac{1}{2}\sin 2t = \ln\left(\frac{3(4-2)}{4}\right) \right = \ln\left(\frac{3}{2}\right) \right \qquad \lambda \neq 0, \ k > 0 \text{ where } \lambda \text{ and } k \text{ are numerical}$	M1
	$t = 0.4728700467$ values and λ can be 1 anything that rounds to 0.473 Do not apply isw here	A1
		[3] 13

Question Number		Scheme	Marks	
	Method 2 for Q7(b)			
7. (b)	ln (F	$P-2) - \ln P = \frac{1}{2}\sin 2t \ (+c)$ As before for	B1M1A1	
	lr	$\ln\left(\frac{(P-2)}{P}\right) = \frac{1}{2}\sin 2t + c$		
	$\frac{(P-2)}{P}$	$\frac{2}{P} = e^{\frac{1}{2}\sin 2t + c} \text{ or } \frac{(P-2)}{P} = Ae^{\frac{1}{2}\sin 2t}$ Starting from an equation of the form $\pm \lambda \ln(P-\beta) \pm \mu \ln P = \pm K \sin \delta t + c,$ $\lambda, \mu, \beta, K, \delta \neq 0,$ applies a fully correct method to eliminate their logarithms. Must have a constant of integration that need not be evaluated (see note)	3 rd M1	
		$= APe^{\frac{1}{2}\sin 2t} \Rightarrow P - APe^{\frac{1}{2}\sin 2t} = 2$ $- Ae^{\frac{1}{2}\sin 2t}) = 2 \Rightarrow P = \frac{2}{(1 - Ae^{\frac{1}{2}\sin 2t})}$ A complete method of rearranging to make P the subject. Condone sign slips or constant errors. Must have a constant of integration that need not be evaluated (see note)	4 th dM1	
	$\{t=0, I$	$P = 3 \implies 3 = \frac{2}{(1 - Ae^{\frac{1}{2}\sin 2(0)})}$ (Allocate this mark as the 2 nd M1 mark on ePEN).	2 nd M1	
	$\left\{ \Rightarrow 3 = \right.$	$=\frac{2}{(1-A)} \Longrightarrow A = \frac{1}{3}$		
	$\Rightarrow P =$	$\frac{2}{\left(1-\frac{1}{3}e^{\frac{1}{2}\sin 2t}\right)} \Rightarrow P = \frac{6}{(3-e^{\frac{1}{2}\sin 2t})}^{*}$ Correct proof.	A1 * cso	
		Question 7 Notes		
7. (a)	M1	Forming a correct identity. For example, $2 \equiv A(P-2) + BP$ from $\frac{2}{P(P-2)} = \frac{A}{P} + \frac{A}{P}$	$-\frac{B}{(P-2)}$	
	Note A1	A and B are not referred to in question. Either one of $A = -1$ or $B = 1$.		
	A1	$\frac{1}{(P-2)} - \frac{1}{P}$ or any equivalent form. This answer <i>cannot</i> be recovered from part (b).	
	Note	M1A1A1 can also be given for a candidate who finds both $A = -1$ and $B = 1$ and $\frac{A}{P}$	$\frac{B}{B} + \frac{B}{(P-2)}$	
		is seen in their working.		
	Note	Candidates can use 'cover-up' rule to write down $\frac{1}{(P-2)} - \frac{1}{P}$, so as to gain all three	e marks.	
	Note	Equating coefficients from $2 \equiv A(P-2) + BP$ gives $A + B = 2, -2A = 2 \Longrightarrow A = -1$,		

7. (b)	B1	Separates variables as shown on the Mark Scheme. dP and dt should be in the correct positions,
		though this mark can be implied by later working. Ignore the integral signs.
	Note	Eg: $\int \frac{2}{P^2 - 2P} dP = \int \cos 2t dt$ or $\int \frac{1}{P(P-2)} dP = \frac{1}{2} \int \cos 2t dt$ o.e. are also fine for B1.
	1 st M1	$\pm \lambda \ln(P-2) \pm \mu \ln P, \ \lambda \neq 0, \ \mu \neq 0.$ Also allow $\pm \lambda \ln(M(P-2)) \pm \mu \ln NP; \ M, N \text{ can be } 1.$
	Note	Condone $2\ln(P-2) + 2\ln P$ or $2\ln(P(P-2))$ or $2\ln(P^2 - 2P)$ or $\ln(P^2 - 2P)$
	1 st A1	Correct result of $\ln(P-2) - \ln P = \frac{1}{2}\sin 2t$ or $2\ln(P-2) - 2\ln P = \sin 2t$
	2 nd M1	o.e. with or without $+c$ Some evidence of using both $t = 0$ and $P = 3$ in an integrated equation containing a constant of integration. Eg: c or A , etc.
	3 rd M1	Starting from an equation of the form $\pm \lambda \ln(P - \beta) \pm \mu \ln P = \pm K \sin \delta t + c$, $\lambda, \mu, \beta, K, \delta \neq 0$,
	4 th M1	applies a fully correct method to eliminate their logarithms. dependent on the third method mark being awarded.
	Note	A complete method of rearranging to make P the subject. Condone sign slips or constant errors. For the 3 rd M1 and 4 th M1 marks, a candidate needs to have included a constant of integration, in their working. eg. c , A , $\ln A$ or an evaluated constant of integration.
	2 nd A1	Correct proof of $P = \frac{6}{(3 - e^{\frac{1}{2}\sin 2t})}$. Note: This answer is given in the question.
	Note	$\ln\left(\frac{(P-2)}{P}\right) = \frac{1}{2}\sin 2t + c \text{ followed by } \frac{(P-2)}{P} = e^{\frac{1}{2}\sin 2t} + e^c \text{ is } 3^{\text{rd}} \text{ M0, } 4^{\text{th}} \text{ M0, } 2^{\text{rd}} \text{ A0.}$
	Note	$\ln\left(\frac{(P-2)}{P}\right) = \frac{1}{2}\sin 2t + c \rightarrow \frac{(P-2)}{P} = e^{\frac{1}{2}\sin 2t + c} \rightarrow \frac{(P-2)}{P} = e^{\frac{1}{2}\sin 2t} + e^{c} \text{ is final M1M0A0}$
	4 th M1	for making <i>P</i> the subject
		ere are three type of manipulations here which are considered acceptable for making
	<i>P</i> the su (1) M1	for $\frac{3(P-2)}{P} = e^{\frac{1}{2}\sin 2t} \Rightarrow 3(P-2) = Pe^{\frac{1}{2}\sin 2t} \Rightarrow 3P-6 = Pe^{\frac{1}{2}\sin 2t} \Rightarrow P(3-e^{\frac{1}{2}\sin 2t}) = 6$
		$\Rightarrow P = \frac{6}{(3 - e^{\frac{1}{2}\sin 2t})}$
	(2) M1	for $\frac{3(P-2)}{P} = e^{\frac{1}{2}\sin 2t} \Rightarrow 3 - \frac{6}{P} = e^{\frac{1}{2}\sin 2t} \Rightarrow 3 - e^{\frac{1}{2}\sin 2t} = \frac{6}{P} \Rightarrow \Rightarrow P = \frac{6}{(3 - e^{\frac{1}{2}\sin 2t})}$
	(3) M1	for $\left\{ \ln(P-2) + \ln P = \frac{1}{2} \sin 2t + \ln 3 \Rightarrow \right\} P(P-2) = 3e^{\frac{1}{2}\sin 2t} \Rightarrow P^2 - 2P = 3e^{\frac{1}{2}\sin 2t}$
		$\Rightarrow (P-1)^2 - 1 = 3e^{\frac{1}{2}\sin 2t} \text{ leading to } P =$
(c)	M1	States $P = 4$ or applies $P = 4$
	M1	Obtains $\pm \lambda \sin 2t = \ln k$ or $\pm \lambda \sin t = \ln k$, where λ and k are numerical values and λ can be 1
	A1	anything that rounds to 0.473. (Do not apply isw here)
	Note	Do not apply ignore subsequent working for A1. (Eg: 0.473 followed by 473 years is A0.)
	Note	<u>Use of $P = 4000$</u> : Without the mention of $P = 4$, $\frac{1}{2}\sin 2t = \ln 2.9985$ or $\sin 2t = 2\ln 2.9985$
		or $\sin 2t = 2.1912$ will usually imply M0M1A0
	Note	<u>Use of Degrees:</u> $t = awrt 27.1$ will usually imply M1M1A0

Question Number	Scheme		Marks	
8. (a)	$\left\{ y = 3^x \Longrightarrow \right\} \frac{\mathrm{d}y}{\mathrm{d}x} = 3^x \ln 3$	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3^x \ln 3 \text{ or } \ln 3 \left(\mathrm{e}^{x \ln 3} \right) \text{ or } y \ln 3$	B1	
	Either T : $y - 9 = 3^2 \ln 3(x - 2)$	Saa notas	M1	
	or T: $y = (3^2 \ln 3)x + 9 - 18 \ln 3$, where $9 = (3^2 \ln 3)x + 9 - 18 \ln 3$	n(3)(2) + c See notes	M1	
	$\{\text{Cuts } x\text{-axis} \Rightarrow y = 0 \Rightarrow \}$			
	$-9 = 9\ln 3(x-2)$ or $0 = (3^2\ln 3)x + 9 - 18\ln 3$,	Sets $y = 0$ in their tangent equation and progresses to $x =$	M1	
	So, $x = 2 - \frac{1}{\ln 3}$	$2 - \frac{1}{\ln 3}$ or $\frac{2\ln 3 - 1}{\ln 3}$ o.e.		
	$f(2x)^{2}(1) = \int 2^{2x}(1) = \int 0^{x}(1)$	$V = \pi \int (3^x)^2 \text{ with or without } dx,$	[4]	
(b)	$V = \pi \int \left(3^x\right)^2 \left\{ dx \right\} \text{ or } \pi \int 3^{2x} \left\{ dx \right\} \text{ or } \pi \int 9^x \left\{ dx \right\}$	which can be implied	B1 o.e.	
	<i>.</i>	Eg: either $3^{2x} \rightarrow \frac{3^{2x}}{\pm \alpha (\ln 3)}$ or $\pm \alpha (\ln 3) 3^{2x}$	M1	
	$= \left\{\pi\right\} \left(\frac{3^{2x}}{2\ln 3}\right) \text{or} = \left\{\pi\right\} \left(\frac{9^x}{\ln 9}\right)$	or $9^x \to \frac{9^x}{\pm \alpha(\ln 9)}$ or $\pm \alpha(\ln 9)9^x$, $\underline{\alpha \in }$	1411	
	$3^{2x} \rightarrow \frac{1}{2}$	$\frac{3^{2x}}{\ln 3} \text{ or } 9^x \rightarrow \frac{9^x}{\ln 9} \text{ or } e^{2x\ln 3} \rightarrow \frac{1}{2\ln 3} \left(e^{2x\ln 3} \right)$	A1 o.e.	
	$\begin{cases} V = \pi \int_{0}^{2} 3^{2x} dx = \left\{\pi\right\} \left[\frac{3^{2x}}{2\ln 3}\right]_{0}^{2} = \left\{\pi\right\} \left(\frac{3^{4}}{2\ln 3} - \frac{1}{2\ln 3}\right) = \left\{\pi\right\} \left(\frac{3^{4}}{2$	Dependent on the previous $\begin{cases} = \frac{40\pi}{12} \\ = 2 \text{ and } x = 0 \text{ and subtracts} \end{cases}$	dM1	
	$\begin{bmatrix} J_0 & (J_2 \ln 3) \end{bmatrix}_0 & (J_2 \ln 3) \end{bmatrix} (J_1 (2 \ln 3) + 2 \ln 3) = 2 \text{ and } x = 0 \text{ and subtracts}$ the correct way round.			
	$V_{\text{cone}} = \frac{1}{3}\pi (9)^2 \left(\frac{1}{\ln 3}\right) \left\{ = \frac{27\pi}{\ln 3} \right\}$	$V_{\text{cone}} = \frac{1}{3}\pi(9)^2 \left(2 - \text{their } (a)\right). \text{ See notes.}$	B1ft	
	$\left\{\operatorname{Vol}(S) = \frac{40\pi}{\ln 3} - \frac{27\pi}{\ln 3}\right\} = \frac{13\pi}{\ln 3}$	$\frac{13\pi}{\ln 3}$ or $\frac{26\pi}{\ln 9}$ or $\frac{26\pi}{2\ln 3}$ etc., isw	A1 o.e.	
		$\{ \text{Eg: } p = 13\pi, \ q = \ln 3 \}$	[6]	
		()	10	
(b)	Alternative Method 1: Use of a substitution			
	$V = \pi \int \left(3^x\right)^2 \left\{ \mathrm{d}x \right\}$		B1 o.e.	
	$\left\{ u = 3^x \Longrightarrow \frac{\mathrm{d}u}{\mathrm{d}x} = 3^x \ln 3 = u \ln 3 \right\} V = \left\{ \pi \right\} \int \frac{u^2}{u \ln 3} \left\{ \mathrm{d}u \right\}$	$u\} = \left\{\pi\right\} \int \frac{u}{\ln 3} \left\{\mathrm{d}u\right\}$		
	$= \left\{\pi\right\} \left(\frac{u^2}{2\ln 3}\right) \tag{3}$	$\left(\frac{u^2}{\pm \alpha (\ln 3)}\right)^2 \rightarrow \frac{u^2}{\pm \alpha (\ln 3)}$ or $\pm \alpha (\ln 3)u^2$, where $u = 3^x$	M1	
	$= \{\pi\} \left(\frac{1}{2\ln 3}\right)$	$(3^x)^2 \rightarrow \frac{u^2}{2(\ln 3)}$, where $u = 3^x$	A1	
	$\left\{ V = \pi \int_0^2 (3^x)^2 dx = \left\{ \pi \right\} \left[\frac{u^2}{2\ln 3} \right]_1^9 \right\} = \left\{ \pi \right\} \left(\frac{9^2}{2\ln 3} - \frac{1}{2\ln 3} \right)_1^9 = \left\{ \pi \right\} \left(\frac{9^2}{2\ln 3} - \frac{1}{2\ln 3} \right)_1^9 = \left\{ \pi \right\} \left(\frac{9^2}{2\ln 3} - \frac{1}{2\ln 3} \right)_1^9 = \left\{ \pi \right\} \left(\frac{9^2}{2\ln 3} - \frac{1}{2\ln 3} \right)_1^9 = \left\{ \pi \right\} \left(\frac{9^2}{2\ln 3} - \frac{1}{2\ln 3} \right)_1^9 = \left\{ \pi \right\} \left(\frac{9^2}{2\ln 3} - \frac{1}{2\ln 3} \right)_1^9 = \left\{ \pi \right\} \left(\frac{9^2}{2\ln 3} - \frac{1}{2\ln 3} \right)_1^9 = \left\{ \pi \right\} \left(\frac{9^2}{2\ln 3} - \frac{1}{2\ln 3} \right)_1^9 = \left\{ \pi \right\} \left(\frac{9^2}{2\ln 3} - \frac{1}{2\ln 3} \right)_1^9 = \left\{ \pi \right\} \left(\frac{9^2}{2\ln 3} - \frac{1}{2\ln 3} \right)_1^9 = \left\{ \pi \right\} \left(\frac{9^2}{2\ln 3} - \frac{1}{2\ln 3} \right)_1^9 = \left\{ \pi \right\} \left(\frac{9^2}{2\ln 3} - \frac{1}{2\ln 3} \right)_1^9 = \left\{ \pi \right\} \left(\frac{9^2}{2\ln 3} - \frac{1}{2\ln 3} \right)_1^9 = \left\{ \pi \right\} \left(\frac{9^2}{2\ln 3} - \frac{1}{2\ln 3} \right)_1^9 = \left\{ \pi \right\} \left(\frac{9^2}{2\ln 3} - \frac{1}{2\ln 3} \right)_1^9 = \left\{ \pi \right\} \left(\frac{9^2}{2\ln 3} - \frac{1}{2\ln 3} \right)_1^9 = \left\{ \pi \right\} \left(\frac{9^2}{2\ln 3} - \frac{1}{2\ln 3} \right)_1^9 = \left\{ \pi \right\} \left(\frac{9^2}{2\ln 3} - \frac{1}{2\ln 3} \right)_1^9 = \left\{ \pi \right\} \left(\frac{9^2}{2\ln 3} - \frac{1}{2\ln 3} \right)_1^9 = \left\{ \pi \right\} \left(\frac{9^2}{2\ln 3} - \frac{1}{2\ln 3} \right)_1^9 = \left\{ \pi \right\} \left(\frac{9^2}{2\ln 3} - \frac{1}{2\ln 3} \right)_1^9 = \left\{ \pi \right\} \left(\frac{9^2}{2\ln 3} - \frac{1}{2\ln 3} \right)_1^9 = \left\{ \pi \right\} \left(\frac{9^2}{2\ln 3} - \frac{1}{2\ln 3} \right)_1^9 = \left\{ \pi \right\} \left(\frac{9^2}{2\ln 3} - \frac{1}{2\ln 3} \right)_1^9 = \left\{ \pi \right\} \left(\frac{9^2}{2\ln 3} - \frac{1}{2\ln 3} \right)_1^9 = \left\{ \pi \right\} \left(\frac{9^2}{2\ln 3} - \frac{1}{2\ln 3} \right)_1^9 = \left\{ \pi \right\} \left(\frac{9^2}{2\ln 3} - \frac{1}{2\ln 3} \right)_1^9 = \left\{ \pi \right\} \left(\frac{9^2}{2\ln 3} - \frac{1}{2\ln 3} \right)_1^9 = \left\{ \pi \right\} \left(\frac{9^2}{2\ln 3} - \frac{1}{2\ln 3} \right)_1^9 = \left\{ \pi \right\} \left(\frac{9^2}{2\ln 3} - \frac{1}{2\ln 3} \right)_1^9 = \left\{ \pi \right\} \left(\frac{9^2}{2\ln 3} - \frac{1}{2\ln 3} \right)_1^9 = \left\{ \pi \right\} \left(\frac{9^2}{2\ln 3} - \frac{1}{2\ln 3} \right)_1^9 = \left\{ \pi \right\} \left(\frac{9^2}{2\ln 3} - \frac{1}{2\ln 3} \right)_1^9 = \left\{ \pi \right\} \left(\frac{9^2}{2\ln 3} - \frac{1}{2\ln 3} \right)_1^9 = \left\{ \pi \right\} \left(\frac{9^2}{2\ln 3} - \frac{1}{2\ln 3} \right)_1^9 = \left\{ \pi \right\} \left(\frac{9^2}{2\ln 3} - \frac{1}{2\ln 3} \right)_1^9 = \left\{ \pi \right\} \left(\frac{9^2}{2\ln 3} - \frac{1}{2\ln 3} \right)_1^9 = \left\{ \pi \right\} \left(\frac{9^2}{2\ln 3} - \frac{1}{2\ln 3} \right)_1^9 = \left\{ \pi \right\} \left(\frac{9^2}{2\ln 3} - \frac{1}{2\ln 3} \right)_1^9 = \left\{ \pi \right\} \left(\frac{9^2}{2\ln 3} - \frac{1}{2\ln 3} \right)_1^9 = \left\{ \pi \right\} \left(\frac{9^2}{2\ln 3} - \frac{1}{2\ln 3} \right)_1^9 = \left\{ \pi \right\} \left(\frac{9^2}{2\ln 3} - \frac{1}{2\ln 3} \right)_1^9 = \left\{ \pi \right\} \left(\frac{9^2}{2\ln 3} - \frac{1}{2\ln 3} \right)_1^9 = \left\{$	$\frac{1}{3} \begin{cases} = \frac{40\pi}{\ln 3} \end{cases}$ Substitutes limits of 9 and 1 in <i>u</i> (or 2 and 0 in <i>x</i>) and subtracts the correct way round.	dM1	
	then apply the main scheme.	<i>y</i>		

	Question 8 Notes		
8. (a) B1 $\frac{dy}{dx} = 3^x \ln 3$ or $\ln 3(e^{x \ln 3})$ or $y \ln 3$. Can be implied by later working.			
	M1	Substitutes either $x = 2$ or $y = 9$ into their $\frac{dy}{dx}$ which is a function of x or y to find m_T and	
		• either applies $y - 9 = (\text{their } m_T)(x - 2)$, where m_T is a numerical value.	
		• or applies $y = (\text{their } m_T)x + \text{their } c$, where m_T is a numerical value and c is found	
		by solving $9 = (\text{their } m_T)(2) + c$	
	Note	The first M1 mark can be implied from later working.	
	M1	Sets $y = 0$ in their <i>tangent</i> equation, where m_T is a numerical value, (seen or implied)	
		and progresses to $x = \dots$	
	A1	An exact value of $2 - \frac{1}{\ln 3}$ or $\frac{2\ln 3 - 1}{\ln 3}$ or $\frac{\ln 9 - 1}{\ln 3}$ by a correct solution only.	
	Note	Allow A1 for $2 - \frac{\lambda}{\lambda \ln 3}$ or $\frac{\lambda(2\ln 3 - 1)}{\lambda \ln 3}$ or $\frac{\lambda(\ln 9 - 1)}{\lambda \ln 3}$ or $2 - \frac{\lambda}{\lambda \ln 3}$, where λ is an integer, and ignore subsequent working.	
	Note	Using a changed gradient (i.e. applying $\frac{-1}{\text{their } \frac{dy}{dx}}$ or $\frac{1}{\text{their } \frac{dy}{dx}}$) is M0 M0 in part (a).	
	Note	Candidates who invent a value for m_{T} (which bears no resemblance to their gradient function)	
		cannot gain the 1^{st} M1 and 2^{nd} M1 mark in part (a).	
0 (1)	Note	A decimal answer of 1.089760773 (without a correct exact answer) is A0.	
8. (b)	B1	A correct expression for the volume with or without dx $\int (x^2 + y^2) dx$	
	Note	Eg: Allow B1 for $\pi \int (3^x)^2 \{ dx \}$ or $\pi \int 3^{2x} \{ dx \}$ or $\pi \int 9^x \{ dx \}$ or $\pi \int (e^{x \ln 3})^2 \{ dx \}$	
		or $\pi \int (e^{2x \ln 3}) \{ dx \}$ or $\pi \int e^{x \ln 9} \{ dx \}$ with or without dx	
	M1	Either $3^{2x} \rightarrow \frac{3^{2x}}{\pm \alpha (\ln 3)}$ or $\pm \alpha (\ln 3) 3^{2x}$ or $9^x \rightarrow \frac{9^x}{\pm \alpha (\ln 9)}$ or $\pm \alpha (\ln 9) 9^x$	
		$e^{2x\ln 3} \rightarrow \frac{e^{2x\ln 3}}{\pm \alpha(\ln 3)}$ or $\pm \alpha(\ln 3)e^{2x\ln 3}$ or $e^{x\ln 9} \rightarrow \frac{e^{x\ln 9}}{\pm \alpha(\ln 9)}$ or $\pm \alpha(\ln 9)e^{x\ln 9}$, etc where $\alpha \in $	
	Note	$3^{2x} \rightarrow \frac{3^{2x+1}}{\pm \alpha (\ln 3)} \text{ or } 9^x \rightarrow \frac{9^{x+1}}{\pm \alpha (\ln 3)} \text{ are allowed for M1}$ $3^{2x} \rightarrow \frac{3^{2x+1}}{2x+1} \text{ or } 9^x \rightarrow \frac{9^{x+1}}{x+1} \text{ are both M0}$	
	Note	$3^{2x} \to \frac{3^{2x+1}}{2x+1}$ or $9^x \to \frac{9^{x+1}}{x+1}$ are both M0	
	Note	M1 can be given for $9^{2x} \rightarrow \frac{9^{2x}}{\pm \alpha (\ln 9)}$ or $\pm \alpha (\ln 9)9^{2x}$	
	A1	Correct integration of 3^{2x} . Eg: $3^{2x} \rightarrow \frac{3^{2x}}{2\ln 3}$ or $\frac{3^{2x}}{\ln 9}$ or $9^x \rightarrow \frac{9^x}{\ln 9}$ or $e^{2x\ln 3} \rightarrow \frac{1}{2\ln 3} (e^{2x\ln 3})$	
	dM1	dependent on the previous method mark being awarded.	
	Note	Attempts to apply $x = 2$ and $x = 0$ to integrated expression and subtracts the correct way round. Evidence of a proper consideration of the limit of 0 is needed for M1. So subtracting 0 is M0.	

2nd B1ft mark for finding the Volume of a Cone **8.** (b) **Alternative method 2:** $V_{\rm cone} = \pi \int_{2-\frac{1}{2}}^{2} (9x \ln 3 - 18 \ln 3 + 9)^2 \, \mathrm{d}x$ $= \pi \int_{2-\frac{1}{1-2}}^{2} \left(81x^2 \left(\ln 3 \right)^2 - 324x \left(\ln 3 \right)^2 + 162x \ln 3 - 324 \ln 3 + 324 (\ln 3)^2 + 81 \right) dx$ Award B1ft here where $=\pi \Big[27x^3 (\ln 3)^2 - 162x^2 (\ln 3)^2 + 81x^2 \ln 3 - 324x \ln 3 + 324x (\ln 3)^2 + 81x \Big]_{2-\frac{1}{1-2}}^2$ their lower limit is $2 - \frac{1}{\ln 3}$ **** or their part (a) answer. $\left(216(\ln 3)^2 - 648(\ln 3)^2 + 324\ln 3 - 648\ln 3 + 648(\ln 3)^2 + 162\right)$ $= \pi \left| - \left(27 \left(2 - \frac{1}{\ln 3} \right)^3 \left(\ln 3 \right)^2 - 162 \left(2 - \frac{1}{\ln 3} \right)^2 \left(\ln 3 \right)^2 + 81 \left(2 - \frac{1}{\ln 3} \right)^2 \ln 3 \right) - 324 \left(2 - \frac{1}{\ln 3} \right) \ln 3 + 324 \left(2 - \frac{1}{\ln 3} \right) (\ln 3)^2 + 81 \left(2 - \frac{1}{\ln 3} \right) \right) \right|$ $\left(27\left(8 - \frac{12}{\ln 3} + \frac{6}{(\ln 3)^2} - \frac{1}{(\ln 3)^3}\right) (\ln 3)^2 - 162\left(4 - \frac{4}{\ln 3} + \frac{1}{(\ln 3)^2}\right) (\ln 3)^2\right)\right)$ $=\pi \left| \left(216(\ln 3)^2 - 324\ln 3 + 162 \right) - \right| + 81 \left(4 - \frac{4}{\ln 3} + \frac{1}{(\ln 3)^2} \right) \ln 3 - 324 \left(2 - \frac{1}{\ln 3} \right) \ln 3$ $+324\left(2-\frac{1}{\ln 3}\right)(\ln 3)^{2}+81\left(2-\frac{1}{\ln 3}\right)$ $\left(216(\ln 3)^2 - 324\ln 3 + 162 - \frac{27}{\ln 3} - 648(\ln 3)^2 + 648\ln 3 - 162\right)$ $= \pi \left| \left(216(\ln 3)^2 - 324\ln 3 + 162 \right) - \right| + 324\ln 3 - 324 + \frac{81}{\ln 3} - 648\ln 3 + 324 \right|$ + $648(\ln 3)^2 - 324\ln 3 + 162 - \frac{81}{\ln 3}$ $=\pi\left[\left(216(\ln 3)^2 - 324\ln 3 + 162\right) - \left(216(\ln 3)^2 - 324\ln 3 + 162 - \frac{27}{\ln 3}\right)\right]$ $=\frac{27\pi}{\ln 3}$